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The tearing of a pressure-sensitive (‘tacky’) adhesive is examined. Two flexible 
strips bonded by a layer of adhesive are passed between adjacent cylindrical 
guides and peeled apart, causing the adhesive layer to separate into two about a 
surface tension membrane. Treating the adhesive as a Newtonian viscous fluid, 
the slow-flow problem is solved by an iterative numerical scheme in which the 
surface tension membrane boundary in the vicinity of the region of separation is 
approximated by a shear-free boundary given by a sixth-degree polynomial 
expression. The energy dissipation rate, a measure of the ‘strength’ of the ad- 
hesive, is obtained from the flow. 

The solution method is also used to determine the similar flow induced by two 
counter-rotating rollers partially immersed in a large bath of fluid. The results 
are in fairly good agreement with available experimental data. The symmetrical 
eddies observed under the lowest point of the surface tension membrane in the 
stable flow between the rollers are reproduced in the solution, proving that fluid 
inertia effects are not essential for their existence. 

1. Introduction 
The phenomenon of ‘stickiness ’ in pressure-sensitive (tacky) adhesives has 

been explained in terms of viscous fluid behaviour (e.g. Bickerman 1968). 
In  considering the failure of suchan adhesive it therefore seemsnatural to investi- 
gate the corresponding viscous fluid flow. In  this paper the steady-state peeling 
separation of two flexible strips (tapes) bonded by a viscous fluid layer as they 
are torn apart is examined (see figure 1) .  The strips are separated by pulling them 
around two adjacent frictionless cylindrical guides. 

The related flow which occurs in the adhesive layer between a peeling tape 
and a plane was investigated by McEwan & Taylor (1966). Their solution, re 
lating the angle at  which the tape peels off the plane to the tape tension and the 
speed of advance of peeling, involved the use of empirical data and did not 
permit the determination of the detailed flow in the separation region. Pitts 
& Greiller (1961) examined, both theoretically and experimentally, the flow 
induced by two rollers partially immersed in a bath of viscous fluid and counter- 
rotated to draw fluid up through the narrow gap between them. Above the gap, 



640 A .  S. Williamson 

the fluid separated under a surface tension membrane into two films? which 
travelled around with the rollers and returned to the bath. I n  the section of the 
paper dealing with the two-dimensional flow of this system the analytical treat- 
ment was approximate and confined to  the neighbourhood of the lowest point of 
the surface tension membrane. 

2. The peeling model 
The flow considered is the plane, steady, slow (i.e. inertialess) flow of an in- 

compressible viscous fluid. Gravity effects other than a uniform atmospheric 
pressure are omitted, as Pitts & Greiller found them to be negligible in the cases 
of interest. The possibility of cavitation effects (see Banks & Mills 1954) is not 
considered and the flow is taken to  be symmetrical about the x axis in figure 1. 

Flexible tape \vith 
zero bending stiffness 

Viscous adhesive layer -~ 

Undisturbed fluid layer. 

F, kipc tciision 
pel- unit  width 

FIGURE 1. The peeling flow. 

The tapes are inextensible and have no bending rigidity, the tape tension is F ,  
and the tape speed is U ,  a constant. Far below the guides it is tentatively assumed 
that the tapes and fluid layer can be in an undisturbed state, moving as a rigid 
body (the assumption is subsequently confirmed). I n  this region the tape tension 

t The word 'film' is reserved for a thin fluid layer. At a fluid-air interface the skin, 
of molecnlar thickness, which behaves as if under tension is called a surface tension inem- 
brane. 
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is P, and the fluid layer thickness is 2h,. The values of the following parameters 
are considered given: 

where T is the surface tension, p is the coefficient of viscosity and 2h0 is the 
closest approachof the guides (at the 'nip 'section in figure l ) ,  which are of radius 
R .  A method is developed for determining the resulting flow when (i) ho/R < 1 ,  
(ii) the fluid layer thickness before tape contact with the guides is approximately 
2h,. Since the boundary conditions on the flow alter as the tapes pass through 
the guides, different flow regions are treated separately in the analysis and con- 
tinuity conditions are used to relate neighbouring flows a t  junctions. 

p U / T ,  ho/R, h,/R, FmlT, ( 2 . 1 )  

2.1.  TheJlow between the tapes prior to contact with the guides 

By confining attention to cases where the tape slope and curvature are small the 
flow may be obtained from the Reynolds approximation. The boundary conditions 
are taken as 

The Reynolds flow equation leads to 

(2 .2 )  

(2 .3 )  

dp/dx = (3pU/h3) (h-h,) .  (2 .4 )  

( 2 - 5 )  

P(d2h/dx2) = -pa ( 2 - 6 )  

(du/dy)@ = 0, u(z,h) = u. 

u = U[1+ ( 3/2h3) (h, - h) (h2 - yz)], 

For small tape slopes equilibrium requires 

dP/dx = rxl/(x, h) = (3pU/h2) (h - h,), 

where rxv is the shear stress on the fluid, and 

Equations (2 .4 )  and (2 .6)  are similar to those used by McEwan & Taylor. In  
(2 .5 )  the variation of tape tension is included but for the cases considered in this 
paper (in which lh-h,\/h, < 1 )  it  will be seen that this variation is negligible. 

No general closed-form solution for h(x) has been found. The equations may 
be linearized about the solution 

h = h,, P = F,, p = 0. 

Letting P = P,(l +a'), h = h,(l +h'), a3 = 3pU/8F,  ( 2 . 7 )  

and neglecting second-order terms in P' and h', the solution for h' may be written 

(2.8) 
as h' = A exp ( - 2ax/h,) + B exp (m/h , )  sin (43ax/h, + e). 

Equation (2.8) is similar to McEwan & Taylor's result. For consistency with the 
assumption lim h = h,, A = 0. Constants B and e, and the location of the first 

contact of tape and guide, section JJ' (see figure l ) ,  are found by matching the 
flows in the regions adjoining JJ'. At the junction the fluid-layer thickness and 
pressure must be continuous, and since a discontinuity in tape slope would re- 
quire the guide to exert a tensile load on the tape, the tape slope must be con- 
tinuous. 

x+- 00 

41 F L M  52 
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2.2. ReynoldsJEow when the tapes are in contact with the guides 

The spreading of the flow beneath the surface tension membrane necessitates the 
full biharmonic treatment in that region. Below the nip section, however, the 
assumptions of Reynolds flow are satisfied providing that 

h / R <  1 and Idh/dxl < 1. (2.9) 

I n  the (x, y) co-ordinate system (see figure 1) the left-hand guide surface in the 
neighbourhood of the nip is given by 

h = hO+x2/2R. (2.10) 

The flow equation leads to (2.4), where his known from (2.10). To integrate (2.4) 
it is convenient to introduce the new variables h and q5 defined by 

q = huh,, 
where q is the flow rate, and 

(2.11) 

x = (2Rho)itan$, 1q51 < jp. (2.12) 

Integration introduces one constant. Supposing, for the present, that  at section 
OA p is known, p = po say, then 

(2.13) 

2.3. ReynoldsJlow between the surface tension membrane and the tape 
after separation has occurred 

Far downstream from the membrane vertex point D the flow approaches a uni- 
form state and may be determined from the Reynolds approximation. It is 
convenient here to consider the flow shown in figure 2. A film thickness w(x) is 
bounded by a rigid plane translating with velocity U and a steady membrane of 
surface tension T. 

f! 

Surface tension membrane 

Viscous fluid film 

Rigid plane translating with uniform velocity 

FIGURE 2. Steady-state film of varying thickness between a surface 
tension membrane and a translating plane. 
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At the membrane there are generally three conditions on the flow: 

$ = constant, (2.14) 

7,s = 07 (2.15) 

v, = TK,  (2.16) 

where @ is the stream function, r,, and a;, are the shear and normal stress com- 
ponents, and K is the membrane curvature. For the Reynolds approximation 
to be valid 

I W K ~  < 1 and Idw/dx( 4 1; (2.17) 

then the following approximations may be made: 

7n.s = 72y7 cTn = cTY, K = d2W/dX2. 

Substituting in (2.15) and (2.16), these lead to 

(2.18) 

(2.19) 

Condition (2.14) is automatically satisfied by the Reynolds flow postulates. At 
the lower boundary 

u(x,O) = u. (2.20) 

(2.21) 

(2.22) 

The flow equation yields dp/dx = (3/w3) (Uw - q), 

u = Ti + 3( u/w2 - q/w3) (iy2 - wy), 

where q is the flow rate. From the stress strain-rate relation for a viscous fluid 

cTy = -p+2pi.  1/’ 

q x ,  w)  = - (aujax),,,. 

(2.23) 

(2.24) 

Equation (2.22) is obtained under the assumption that 

p.u/axl < [au/ayl. 

Having thus found u, the derivative with respect to x may legitimately be taken 
although, for consistency, it should always be dropped in comparison to the 
y derivative. From (2.24), therefore, 

3q dw 
i. ( x ,  w )  = -- 

2W2dX Y 

and substitution into (2.19) gives 

(2.25) 

(2.26) 

The above analysis is similar to the treatment by Bretherton (1961) of the thick- 
ness variation of thin films in tubes. Here, however, the strain-rate term in equa- 
tion (2.26), the second term, is seen to be of magnitude comparable with that of 
the other terms and is not omitted. 

41-2 
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No general solution to (2.26) has been found. As in the treatment of the flow 
in 3 2.1, a linearized solution may be obtained about the solution 

w = w, = q/u 

by setting w = w,(l+ w'), 5 = x/w,, p = 3pU/T. 

Substitution into (2.26) and omission of all but linear terms in w' yields 

d3~'/d53-p(d2w'~d52) +Pw' = 0. 

Equation (2.27) has solutions of the form 

w' = Ceag, 

where C is a real coefficient and a satisfies 

a3-pa2+p = 0. 
For lim w' = 0, it follows that 

Re(a)  < 0. x+m 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

From the relations between the roots of a cubic polynomial it can readily be 
proved that there is only one admissible root and that it is real. Thus 

w = w,( 1 + Ceat) (2.31) 

and the film approaches the uniform state with either monotonically increasing 
or decreasing thickness according as C is positive or negative. 

These results may be applied when the translating surface is circular, with 
radius R, providing that w / R  < 1. This restriction is satisfied when the restrictions 
specified in $2.1 are satisfied and h,/h, is of order unity. At section KK' in 
figure 1 the tapes depart tangentially from the guides, otherwise the resulting 
tape slope discontinuity would require the guide to exert a tensile line load. 
Any variation in the film thickness caused by the sudden change in tape curvature 
as it leaves the guide is assumed to be sufficiently small to have no influence on 
the flow in the tearing region. In  terms of the polar co-ordinates ( r ,  0), with origin 
at the centre of the left-hand guide in figure 1, 

p = (3pU/2awa) (1 - [1+ C exp (~RO/W,)]-~) + T/R. 

As the film approaches the rigid coating state, p approaches T/R. 

(2.32) 

2.4. Plow in the separation region 

In  the region shown as OABCD in figure 1 the configuration of the surface tension 
membrane boundary, and therefore the energy dissipation rate within the 
fluid, is dependent on the flow. Because of the analytical difficulties of biharmonic 
free-boundary flows, the solution is obtained by a finite-difference numerical 
method described in fj 3. I n  the solution, CD is considered to be a shear-free bound- 
ary, thus satisfying conditions (2.14) and (2.15), with position prescribed by a 
sixth-degree polynomial. Such a boundary may be thought of as a surface ten- 
sion membrane with a supplementary normal stress 8, forcing the membrane to 
adopt the curve given by the polynomial. The polynomial coefficients are then 
adjusted to satisfy (2.16) as closely as possible. 
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\ this  resion 

Values of thc stream function 
on the indicated streumlines 

(taking the roller boundary 

streamline as += - 1.000) 

Roller 
boundary - 

0 0.01 0.02 0.04 0.06 
Scale 

FIGURE 3. Streamline pattern in the region of the numerical solution OABCD for 
h,/R = 0.01, p U / T  = 0-1, h,,,/h,, = 1.380. (The insert refers to $3.)  
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At BC the film thickness w, is taken as the arbitrarily decided maximum a t  
which the results of 9 2.3 are applicable. In  the examples presented here the ratio 
W J W ,  = 1.20 was used. The slope and curvature of the boundary are taken to be 
continuous at  point C and these two conditions ensure that S is zero at  the junc- 
tion point. In terms of the dimensionless co-ordinates 

X = x/R,  Y = Y / R  

the curve CD is represented by 

X = bo+b,  Y2+bz Y 4 + b 3  Y6.  

The determination of the four coefficients bi requires two additional conditions. 
It was found to be convenient to specify the angle 8, and the position of point D, 
X,. The quantities X, and 8, are referred to as the adjustable parameters of 
CD. Now 

X, = (1 + w,/R) sin 8,, 

Y, = (1 + ho/R)  - (1 + w,/R) cos O,, 

so the equations governing bi are: 

b, = X,, biY;+b,Y:+b,Y,6 = X,-b,, 

2b1Y,+4b,YE+6b3Y,5 = cot [8,-a(w,/w,- l)]. 

Since the curvature and slope are continuous at  C, d2XldY2is also continuous at  C .  
Approximately,? 

1 d2W 1 - R  --_- d2X 
--- dY 2 [R2d82 R] [1+(g)2]:y 

a2R(w,-w,)/w2, - 1 
- sin3 [a, - a(w,/w, - I.)] * which leads to 2b, + 12b2 YE + 30b Y4  - 

The boundary conditions on the flow are: 

(i) On DO, from symmetry, @ = 0, V2$ = 0. 

(ii) On OA, @ and Vz$ are known from 92.2.  

(iii) On AB, @ = - Uh,, a$/& = U .  

(iv) On BC, @ and V2@ are known from 32.3. 

(v) On CD,  @ = 0, T,, = 0.  
To determine a trial flow, numerical values are assigned t o  the parameters in 

(2.1). Initial values are selected for b, and 8, from a scale drawing of a plausible 
flow. With the finite-difference scheme outlined in 3 3 the stream function, in the 
dimensionless form $/Uh,, is determined numerically a t  each mesh node. From 
this solution the normal stress ratio CT, R2/,uUho is determined at each mesh node 
lying on boundary CD except for a constant. The constant is evaluated from the 
pressure at  C known from (2 .32) .  The supplementary stress ratio is then found: 

(2 .33)  
SR2 T K R ~  gnR2 -- _--- 

PUho PUh, PUho' 
t See for example, Lamb (1932, p. 178). 
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The quantity e, e = S/TK, (2.34) 

is a measure of the relative magnitude of S compared to the membrane stress 
TK. The average and root-mean-square values of e are calculated. Depending on 
the size and distribution of e an adjustment is made to either b, or 0,. With the 
new values of b, and 8, another solution is commenced. This process is repeated 

Distance along the membrane from point D, SIR 
FIGURE 4. The variation of u,,, the normal stress on CD, and X along th6 shear-free 
boundary in the flow of figure 3. Average fractional error e, in S/TK is -0.00348, root- 
mean-square fractional error er = 0.0249. Polynomial representation of curve CD with 
b, = 0-3345, 8, = 0.3950 given by 

x / R  = 0.3345+ 9.3110 ( Y / R ) ~ +  393-1013 (y /R)*-  11837.87 (Y/.R)~. 

Optimal Variations in b, Variations in 8, 
values ,-A-, r-------~-, 

b, 0.3345 0.3340 0.3350 0.3345 0.3345 

Change in b, from optimal - -0.15% +0.15% 0 0 
8, 0.3950 0.3950 0.3950 0.3945 0.3955 
Change in 8, from optimal - 0 0 0.13% +0*13% 
er 0.02499 0.03790 0.03660 0.03127 0.02987 

TABLE 1. Sensitivity of e, to small perturbations of 6, and 8, from 
the optimal values for the flow in figure 3 

+ 51.96 % + 46.7 % + 25.2 % + 19.6 % Change in e, - 

until e is reduced to satisfactorylevels. Withasixth-degree polynomial representa- 
tion of CD there was little difficulty in the case examined here in meeting the 
requirements 

after approximately ten iterations, where e, and e, are the average and r.m.8. 
values of e respectively. The sensitivity of er a t  these values to perturbations in 

leal < 0.01, e, < 0-03, 
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b, and 8, for the flow of figure 3 is shown in table I. This may be summarized by 
observing that a 8 % change in b, increases e, by approximately 45 %, and 
a 9 yo change in 0, increases er by approximately 20 % . 

2.5. The completejlow 

The complete flow is obtained by combining the flows of 342.2, 2.3, and 2.4. 
Between K K  and BC the flow is known from the results of $2.3. At BC the choice 
of boundary conditions there assures the continuity offlow. In  OABCD the flow 
is determined numerically and the value of p ,  obtained from the solution. The 
location of section JJ ' ,  the junction of the tapes andguides, is found from applica- 
tion of the continuity conditions of $2.1. These lead to 

h, x$ 
Bexp - sinA=-+--1, e) . h, 2Rh, 

[sin A + 39 cos A] = 3 
aR' 

(2.35) 

(2.36) 

B exp - [sin A - 34 cos A] (::I 
x [&$,+ sin 2q5 ,-- ha (%q5, 3 + 2 sin 2q55 + & sin 4$bJ)] ) ,  (2.37) 

h0 

where A = 3)m,/h, + €  

and q5J is the value of q5 a t  section JJ'. These equations are to be solved for B, E 

and XJ/R (or $,), given the quantities in (2.1). However, it is more convenient to 
prescribe X,/R (or $$) and solve for B, 8, and Fm/T. By obtaining the solution for 
several suitable values of xJ/R the original problem may be solved by interpola- 
tion. The equations are h s t  solved for Fw/T (or a) see (2.7)). Adding (2.36) and 
(2.37) and combining with (2.35), a quadratic equation in a is obtained, the solu- 
tion of which is 

XJ/R (2.38) 
ho/h, + x?/2RhL, - 1 h,/hm + x2,/2RhW - 1 

4LT/3,uU '[( 4LT/3pU ) -LT/3pU ' a =  

where 

The requirement a > 0 is used to select the appropriate root. In  those cases for 
which xJ/R -+ 0, 

2xJ/R a =  
holhm - 1 

and (2.39) 
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It is interesting to note that for finite values of &IT, section JJ'  will not coincide 
with OA. This condition, together with the continuity of tape slope at section JJ'  
and the tape form, (2.8), below JJ'  requires the adhesive layer to 'bulge ' slightly 
before the tapes touch the guides. Thevaluesof B and E are now readily obtained. 
Figure 5 shows a specimen curve of the variation of x J ~ R  with FJT when the 
other parameters of (2.1) take the values indicated. 

.- 

I I 

--OOh - 0 0 5  - 0 0 4  - 0 0 1  - 0 0 2  - 0 0 1  

xJIR 

FIGURE 5. The variation of xJ /R with F,/T for the linearized tape form 
solution of 32.1 with p U / T  = 0-1, h,/h, = 1.38, ho/R = 0.01. 

The energy dissipation rate is 

W = 2(FK-Fm) U+2UT.  

Below JJ' andaboveBC, where linearized solutions have been used for the flow, 
the variation in tape tension is negligible compared with the variation between 
JJ' and BC. Accordingly 

WlUT = 2 (FB/T-IT/;/T) + 2. 

Between JJ'  and OA, in figure 1, thetapetensionvariationisobtainedfrom (2 .5);  
above the nip the variation is determined from the numerical solution. For the 
flow of figure 3, taking Fm/T = 60, the tension variation is shown in figure 6, and 

WlUT = 4.674. (2.40) 

Since the value of Fm/T can be chosen arbitrarily it is necessary to check that 
there is positive pressure between the guide and tape, i.e. 

FIT > -@IT. (2.41) 

In  figure 6 it is evident that (2.41) is satisfied. 
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- 65 

c 55 

FIGURE 6. The variation of the tape tension ratio PIT for the flow: pU/T = 0.1, 
h,/h, = 1.38, h0/R = 0.01, Fm/T = 60.0. Also shown is the curve of -pR/T, t o  confirm 
that there is positive pressure between the guide and tape. 

FIGURE 7. Typical finite-difference mesh. The heavy line shows the path followed in de- 
termining the pressure ratio at  nodes on the tape, or roller, boundary and on the shear- 
free boundary CD. 
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3. Outline of the numerical method and comparison with experi- 
mental results 

3.1. Numerical method 

I n  the numerical analysis dimensionless ratios are used. In  developing the 
theory, however, it  is more convenient to use dimensional quantities. The 
numerical scheme is adapted from a procedure used by Griffin & Varga (1963) 
for the solution of plane elasticity problems. A polar mesh, origin at  the guide 
centre, is imposed on OABCD in the manner shown in figure 7. The intersections 
of the mesh lines and the boundary coincide with mesh nodes. As boundary CD 
is altered during a solution the mesh is also altered and the number of nodes re- 
mains constant. A first-order finite-difference equation in terms of the stream 
function is obtained a t  each node by Taylor series expansion or the method 
described by Griffin & Vasga. At a regular node in which the boundary conditions 
do not explicitly affect the equation, see figure 8, 

fOl(v2$)l +f02(v2$)2+f03(v2~)3  + f 0 4  (v2$)4 - ( f O l  + f 0 2  +fO3 +f04)  (v2$)0 = O ,  (3'1) 

where f o l  = - (r2-r4)/2rO(01-60), f o z  = (ro+rz) ( 0 3 - 0 1 ) / ~ ( ~ 2 - ~ 0 )  

f 0 3  = - (y4-rZ)/2'0(03-e1), fO4 = (rO+r4) (01-03)/4(r4-rO), 

("@)O = A ~ 1 [ f O l $ l + f 0 2 $ 2  +f03$3+f04$4-  ( fOl+fO2f f03+f04)  @O] (3*2) 

FIGURE 8. Detailed view of mesh. 
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and 

with similar expressions for (V2$)i, i = 1,2 ,3 ,4 .  (A,, is the area of the dashed 
figureacef.) To describe the use of equations (3.1) and (3.2) let the finite-difference 
equation for the typical node 0 be written 

A0 = &&4 + 2ro + r2) (r4 - r2) (6, - 831, 

1 2  

i = O  
C aiI,h6 = 0. (3.3) 

Node 1 is tested to determine whether it lies on a boundary. If it does, the appro- 
priate boundary conditions are introduced (see below); if not the four nodes 
surrounding it, used in determining the finite-difference expression for (V2$)l, 
are tested similarly. If any do lie on the boundary the corresponding term in 
(3.3) is known since I,h is known on each boundary. The corresponding term in 
(3.3) is therefore known and is moved to the right-hand side. For those nodes 
that do not lie on the boundary the contribution to each coefficient ai from 
(V2$)1 is determined. Then, in turn, nodes 2, 3 and 4 are similarly treated. 

At the boundaries I,h and V2$ are prescribed. On OA, BC, and DO these are 
known from $2.4.  On AB, the guide boundary, 

where i denotes a node on the boundary AB, j is the adjacent internal node along 
the radial line through i, and hij is the distance betweennodes i andj. On the shear- 
free boundary CD, as is proved in the appendix, 

V2 $ = - 2 K  a$/&, (3.5) 

where 

and 6 is the angle between the outward normal n to CD a t  a node and the radial 
mesh line through the node, see figure 7. First-order finite-difference expressions 
are then substituted for a$pr and a$laf3. The values of K and 6 are obtained from 
the polynomial expression for CD. With the above results a finite-difference 
equation is obtained for each internal mesh node. With the mesh used, shown in 
figure 7 ,  there are 96 equations. 

The solution for the stream function at the mesh nodes is found by matrix 
inversion (as performed a t  the Stanford Computing Center 1969). The value of 
V2$ is now obtained from (3.2) for internal nodes and from the appropriate bound- 
ary condition for boundary nodes. The difference in pressure between any ad- 
jacent nodes can be calculated from the harmonic conjugate relations between 
V2$ and plp. In  figure 8, consider that p/p is known at  node 0 and to be found at  
node 1. On the line 204, V2$ is ‘fitted’ to the quadratic expression 

V2$ = b, + b2r + b3r2. (3.7) 

At node 0 then a(Vz$)lar = b, + 2b,r. 

A similar procedure is used to determine a(Vz$)/ar at  node 1. On the arcOl,p/,u 
is approximated by the quadraticlexpression 

= c1+ ~ 2 8  + ~ 3 8 ~ 3  (3.8) 
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where the coefficients ci are evaluated for (3.8) applied at node 0, and 

is applied at nodes 0 and 1. Thus p / p  at node 1 is found. Moving as indicated in 
figure 6, p / p  is evaluated a t  each mesh node on the path starting and ending 
at section BC, along which the pressure is uniform. The accumulated error 
may then be determined. This was generally found to be approximately 2% 
of the maximum value of pressure on the path. To eliminate the difference 
between the initial and final values p/,u is corrected by the same ‘error per 
step ’. 

To determine the normal stress on boundary CD the normal strain rate must 
be found. It is proved in the appendix that 

(3.10) 

where s is the distance along boundary CD, increasing in the direction from D 
to C. To determine in a t  node 1 on CD in figure 7, appn is determined at Ic, I, 
and m from equation (3.6), where a$/ar and 8$/at9 are obtained by quadratic 
fitting. The distance along boundary CDbetween nodes may be obtained from the 
polynomial expression for CD; however, the straight-line approximation was 
found to give virtually indistinguishable results. The values of a$/& are ‘fitted’ 
to a quadratic expression in s, and in is found from (3.10). The normal stress at 
nodes on CD is then obtained from the constitutive relation, see (2.23), thus 
completing the solution to the flow problem with the prescribed shear-free 
boundary. 

3.2. Comparison with experimental results 

The procedure outlined in $3.1 was applied to the separating flow between par- 
tially immersed counter-rotating rollers examined by Pitts & Greiller. This 
served two purposes. Adistinctive feature of the observed stable two-dimensional 
flow is the presence of two eddies under the lowest point of the surface tension 
membrane. These eddies could be a consequence of inertia effects in the real fluid. 
A numerical analysis based on the exact slow viscous flow equations, however, 
shows that this is not so. Second, since there appears to be no analytic solu- 
tions or special cases with which to verify the numerical results, the experi- 
mental data can serve as a check on the numerical solution. 

The flow is indicated in figure 9. In  region OABCD the problem is similar to that 
dealt with in $2. Here, however, the flow rate between the rollers is not known 
and must be found as part of the solution. For any given flow rate, providing 
the assumptions of the numerical method are satisfied, a numerical solution in 
OABCD can be found. This yields a value of the pressure at the nip section. With 
no exact solution for the flow below the nip, the following widely used procedure 
is adopted (e.g. Banks & Mills 1954; Taylor 1963). From a Reynolds flow analysis 
below the nip, in which the roller boundary is replaced by a parabola with a 
common tangent and radius of curvature at the nip section (see $2.2), the 
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pressure a t  the entrance to the narrowing gap between the rollers, pe say, may 
be obtained, where 

- ( 4 - 3 h ) 3 2 h p U  R Q 
P b  = 16 -( R G  ) +PO. 

The value of pb thus obtained should equal atmospheric pressure taken as 
zero, gravity effects being disregarded. Figure 10 shows how the dimensionless 
pressure ratio pR21pUh0 comes close to the asymptotic value pbR2/puh0 while 
the parabolic approximation for the roller boundary is close to the roller and the 
Reynolds flow assumption is still valid. By solving several problems for different 
flow rates for which p b  varies between negative and positive values, the correct 
flow rate is obtained by interpolation. 

TSurface tension 
meinbrnne 

Bath boundarq 

FIGURE 9. The flow examined by Pitts & Greiller. 

For the flow of figure 3 

With a second flow rate taken as h = 1-340 it was found that 

pbR2 - - 2.48 103. Po - 

From linear interpolation the value of h corresponding to zero p o  is h = 1.345. 
In  $ 3  the experimental determination of the flow rate was approximate. The 

reported results are confined to the mean value and the range of h for all experi- 
ments (with varying h,lR and p U / T ) .  These were found to be 

mean(h) = 1.33 and 1.26 6 h 6 1.38. 

A comparison can also be made between the locations of point D, the lowest 
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point of the meniscus, in the theoretical and experimental results. From data 
kindly supplied by Dr E. Pitts, with 

p U / T  = 0.1 and h,/R = 0.010, 

x,/R lies in the range 0.28 < xD/R < 0.32. 

The numerical solution yields 

xD/R = b, = 0.330, 

which is higher than expected, but still close to the experimental values. A 
qualitative comparison can be made between the theoretical streamline pattern 
and the sketch of a typical observed streamline pattern, figure 2 of Pitts & 
Greiller. Corresponding to the eddies observed in the experimental flow there are 
eddies in the flow of figure 3. 

.~ ---- 
-1.0 -0.8 -0-6 -0.4 -0.2 -0.1 0.1 0-2 0.3 0.4 0.5 0.6 0.7 1 

- 10000- Asymptotic pressure ratio 

FIGURE 10. The variation of pressure in the region below the nip (z < 0) 
from lubrication theory, for two flow rates. ho/R = 0.01. 
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Appendix. Proof of equations (3.5) and (3.10) 
In figure 11, C B  represents a shear-free streamline. The co-ordinates s and n 

are, respectively, the distance along CD in the direction indicated, and the out- 
ward normal. At any point on CD, e.g. point 0, the Cartesian axes locally 
coincident with s and n are T and 7 respectively. 



656 A .  X. Williamson 

FIGURE 11. The Cartesian co-ordinates r ,  7, ooincident a t  point 0 
with the curvilinear system 8, n. 

where y,, and yTr are shear strain rates. Hence, at  0 

where K is positive when the positive direction of n is on the concave side of CD. 
Since CD is a streamline 

Vz$ = -2~a$/an. 

Clearly the above argument is valid at  any point on CD, which thus proves (3.5). 
Similarly, a t  0 

and, since CD is a streamline, 
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