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The tearing of a pressure-sensitive (‘tacky’) adhesive is examined. T'wo flexible
strips bonded by a layer of adhesive are passed between adjacent cylindrical
guides and peeled apart, causing the adhesive layer to separate into two about a
surface tension membrane. Treating the adhesive as a Newtonian viscous fluid,
the slow-flow problem is solved by an iterative numerical scheme in which the
surface tension membrane boundary in the vicinity of the region of separation is
approximated by a shear-free boundary given by a sixth-degree polynomial
expression. The energy dissipation rate, a measure of the ‘strength’ of the ad-
hesive, is obtained from the flow.

The solution method is also used to determine the similar flow induced by two
counter-rotating rollers partially immersed in a large bath of fluid. The results
are in fairly good agreement with available experimental data. The symmetrical
eddies observed under the lowest point of the surface tension membrane in the
stable flow between the rollers are reproduced in the solution, proving that fluid
inertia effects are not essential for their existence.

1. Introduction

The phenomenon of ‘stickiness’ in pressure-sensitive (tacky) adhesives has
been explained in terms of viscous fluid behaviour (e.g. Bickerman 1968).
In congsidering the failure of such an adhesiveit thereforeseemsnatural to investi-
gate the corresponding viscous fluid flow. In this paper the steady-state peeling
separation of two flexible strips (tapes) bonded by a viscous fluid layer as they
are torn apart is examined (see figure 1). The strips are separated by pulling them
around two adjacent frictionless cylindrical guides.

The related flow which occurs in the adhesive layer between a peeling tape
and a plane was investigated by McEwan & Taylor (1966). Their solution, re
lating the angle at which the tape peels off the plane to the tape tension and the
speed of advance of peeling, involved the use of empirical data and did not
permit the determination of the detailed flow in the separation region. Pitts
& Greiller (1961) examined, both theoretically and experimentally, the flow
induced by two rollers partially immersed in a bath of viscous fluid and counter-
rotated to draw fluid up through the narrow gap between them. Above the gap,
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the fluid separated under a surface tension membrane into two filmst which
travelled around with the rollers and returned to the bath. In the section of the
paper dealing with the two-dimensional flow of this system the analytical treat-
ment was approximate and confined to the neighbourhood of the lowest point of
the surface tension membrane.

2. The peeling model

The flow considered is the plane, steady, slow (i.e. inertialess) flow of an in-
compressible viscous fluid. Gravity effects other than a uniform atmospheric
pressure are omitted, as Pitts & Greiller found them to be negligible in the cases
of interest. The possibility of cavitation effects (see Banks & Mills 1954) is not
considered and the flow is taken to be symmetrical about the z axis in figure 1.

Surface tension membrane

F, tupe tension
per unit width

Frictionless guide

217

+— Flexible tape with
zero bending stifiness

Viscous adhesive layer —— ~

—— Undisturbed fluid layer,
] thickness 2/,

Fo| Fo

Figure 1. The peeling flow.

The tapes are inextensible and have no bending rigidity, the tape tension is F,
and the tapespeed is U, a constant. Far below the guides it is tentatively assumed
that the tapes and fluid layer can be in an undisturbed state, moving as a rigid
body (the assumption is subsequently confirmed). In this region the tape tension

T The word ‘film’ is reserved for a thin fluid layer. At a fluid-air interface the skin,
of molecular thickness, which behaves as if under tension is called a surface tension mem-
brane.
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is F, and the fluid layer thickness is 2h.,. The values of the following parameters
are considered given:

uU|T, ho/R, ho/R, F.JT, (2.1)

where T is the surface tension, x4 is the coefficient of viscosity and 2h, is the
closest approach of the guides (at the ‘nip’section in figure 1), which are of radius
R. A method is developed for determining the resulting flow when (i) ko/R < 1,
(ii) the fluid layer thickness before tape contact with the guides is approximately
2h,. Since the boundary conditions on the flow alter as the tapes pass through
the guides, different flow regions are treated separately in the analysis and con-
tinuity conditions are used to relate neighbouring flows at junctions.

2.1. The flow between the tapes prior to contact with the guides

By confining attention to cases where the tape slope and curvature are small the
flow may be obtained from the Reynoldsapproximation. The boundary conditions
are taken as

(du/dy)y—0 = 0, wu(z,h)=U. (2.2)
The Reynolds flow equation leads to
u = U[1+(3/2R3) (b, —R) (R2—y?)], (2.3)
dp/dx = (3uU[R®) (h—h,,). (2.4)
For small tape slopes equilibrium requires
dF[dx = 1, (x,h) = BuU/[h®) (h—h.), (2.5)
where 7,,, is the shear stress on the fluid, and
F(d?h[da?) = —p. (2.6)

Equations (2.4) and (2.6) are similar to those used by McEwan & Taylor. In
(2.5) the variation of tape tension is included but for the cases considered in this
paper (in which |k —k,|/h, < 1) it will be seen that this variation is negligible.

No general closed-form solution for A(x) has been found. The equations may
be linearized about the solution

h=h, F=2F, p=0.
Letting F=FQ0+F), h=h,(1+h"), a®=3uU|[8F, (2.7)
and neglecting second-order terms in F’ and &', the solution for 2’ may be written
as h" = Aexp(—20x/h.)+ Bexp (ax/hy)sin (y/3ax/hy,+€). (2.8)

Equation (2.8) is similar to McEwan & Taylor’s result. For consistency with the
assumption lim A = A,, A = 0. Constants B and ¢, and the location of the first

>~
contact of tape and guide, section JJ' (see figure 1), are found by matching the
flows in the regions adjoining JJ'. At the junction the fluid-layer thickness and
pressure must be continuous, and since a discontinuity in tape slope would re-
quire the guide to exert a tensile load on the tape, the tape slope must be con-
tinuous.
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2.2. Reynolds flow when the tapes are in contact with the guides

The spreading of the flow beneath the surface tension membrane necessitates the
full biharmonic treatment in that region. Below the nip section, however, the
assumptions of Reynolds flow are satisfied providing that

h/R<1 and |dhjda| < 1. (2.9)

In the (z,y) co-ordinate system (see figure 1) the left-hand guide surface in the
neighbourhood of the nip is given by

h = hy+a%2R. (2.10)

The flow equation leads to (2.4), where % is known from (2.10). To integrate (2.4)
it is convenient to introduce the new variables A and ¢ defined by

q = AUh,, (2.11)
where ¢ is the flow rate, and

x = (2Rhy)tang, |@| < . (2.12)

Integration introduces one constant. Supposing, for the present, that at section
OA pis known, p = p, say, then

ho(® —P0) (ﬁ)’zr
3uU \2R

i

314 +1sin2¢ — A (4 + 1sin2¢ + L sin4g).  (2.13)

2.3. Reynolds flow between the surface tension membrane and the tape
after separation has occurred

Far downstream from the membrane vertex point .D the flow approaches a uni-
form state and may be determined from the Reynolds approximation. It is
convenient here to consider the flow shown in figure 2. A film thickness w(z) is
bounded by a rigid plane translating with velocity U and a steady membrane of
surface tension 7'.

I\

p

Surface tension membrane

ey

A )
Viscous fluid film g ' ;

// 4 : U - / y /\*)OO

Rigid plane translating with uniform velocity

Ficure 2. Steady-state film of varying thickness between a surface
tension membrane and a translating plane.
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At the membrane there are generally three conditions on the flow:

Y = constant, (2.14)
Tns = 0, (2.15)
o, =Tk, (2.186)

where ¢ is the stream function, 7, and o, are the shear and normal stress com-

ponents, and « is the membrane curvature. For the Reynolds approximation
to be valid
|lw] <1 and |dw/dx| < 1; (2.17)

then the following approximations may be made:
Tos = Ty On = 0y, K = d2w[da?.
Substituting in (2.15) and (2.16), these lead to
(dufdy),_., = O, (2.18)
o, (x, w) = Td?w[dx?. (2.19)

Condition (2.14) is automatically satisfied by the Reynolds flow postulates. At
thelower boundary

u(z,0) = U. (2.20)
The flow equation yields dp/dx = (3/uw®) (Uw—q), (2.21)
u = U+3(Uw*—q[v®) (3y* — wy), (2.22)

where ¢ is the flow rate. From the stress strain-rate relation for a viscous fluid
g, =~p+2ué, (2.23)
Eylw, w) = — (u/dx),_,,. (2.24)
Equation (2.22) is obtained under the assumption that
|oufox| < |oufoy].

Having thus found u, the derivative with respect to x may legitimately be taken
although, for consistency, it should always be dropped in comparison to the
y derivative. From (2.24), therefore,

. _ 3qdw
ey(:I:, W) = 2_’“)2(% (2.25)
and substitution into (2.19) gives
dPw d {1dw\ 3uU q\ _ ,
T~ g (m—z) o (“’"ﬁ) =0 (2.26)

The above analysis is similar to the treatment by Bretherton (1961) of the thick-
ness variation of thin films in tubes. Here, however, the strain-rate term in equa-
tion (2.26), the second term, is seen to be of magnitude comparable with that of
the other terms and is not omitted.
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No general solution to (2.26) has been found. As in the treatment of the flow
in § 2.1, a linearized solution may be obtained about the solution

W= w, =q/U
by setting w=W(l+w), §=zlw,, pf=3uU/T.
Substitution into (2.26) and omission of all but linear terms in w’ yields
d3w' |[dES — B(dPw' [dE2) + fw' = 0. (2.27)
Equation (2.27) has solutions of the form
w' = Ce%, (2.28)

where (' is a real coefficient and a satisfies

a?—pfa?+ £ = 0. (2.29)
For lim »' = 0, it follows that
T Re(a) < 0. (2.30)

From the relations between the roots of a cubic polynomial it can readily be
proved that there is only one admissible root and that it is real. Thus

w = Wy (1 + Ce*) (2.31)

and the film approaches the uniform state with either monotonically increasing
or decreasing thickness according as C' is positive or negative.

These results may be applied when the translating surface is circular, with
radius R, providing that w/R < 1. Thisrestriction is satisfied when the restrictions
specified in §2.1 are satisfied and h,/h, is of order unity. At section KK’ in
figure 1 the tapes depart tangentially from the guides, otherwise the resulting
tape slope discontinuity would require the guide to exert a tensile line load.
Any variation in the film thickness caused by the sudden change in tape curvature
as it leaves the guide is assumed to be sufficiently small to have no influence on
the flow in the tearing region. In terms of the polar co-ordinates (r, #), with origin
at the centre of the left-hand guide in figure 1,

p = (3uU[2aw,) {1 —[1+ Cexp (aRf/w.,)]"2}+T/R. (2.32)
As the film approaches the rigid coating state, p approaches T'/R.

2.4. Flow tn the separation region

In the region shown as OABCD in figure 1 the configuration of the surface tension
membrane boundary, and therefore the energy dissipation rate within the
fluid, is dependent on the flow. Because of the analytical difficulties of biharmonic
free-boundary flows, the solution is obtained by a finite-difference numerical
method described in §3.In the solution, CDis considered to be a shear-free bound-
ary, thus satisfying conditions (2.14) and (2.15), with position prescribed by a
sixth-degree polynomial. Such a boundary may be thought of as a surface ten-
sion membrane with a supplementary normal stress S, forcing the membrane to
adopt the curve given by the polynomial. The polynomial coefficients are then
adjusted to satisfy (2.16) as closely as possible.
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Fiaure 3. Streamline pattern in the region of the numerical solution 0ABCD for
h/R = 0-01, pU/T = 0-1, h_/hy = 1:380. (The insert refers to §3.)
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At BC the film thickness w, is taken as the arbitrarily decided maximum at
which the results of §2.3 are applicable. In the examples presented here the ratio
W[Ws, = 1-20 was used. The slope and curvature of the boundary are taken to be
continuous at point C and these two conditions ensure that § is zero at the junc-
tion point. In terms of the dimensionless co-ordinates

X =2zR, Y=y|R
the curve CD is represented by
X =0bg+b, Y2+, Y4 +b, Y6

The determination of the four coefficients b, requires two additional conditions.
It was found to be convenient to specify the angle , and the position of point D,
X ;. The quantities X, and 6, are referred to as the adjustable parameters of
CD. Now

X,=(14+w,/R)sing,

Y, = (1+k/R)-(1+w,R)cosb,,
s0 the equations governing b, are:
bo=Xp, by Y2+b,Yi+b,YE = X, —b,,
2b,Y,+4b, Y3+ 6b, Y3 = cot [0, — a(w,/ws, — 1)].

Since the curvature and slope are continuous at C, 42X /dY?is also continuous at C.
Apyproximately,t

#EX_ p[1ldw 1 1+(dX 2]#

are [Rzaw—z R ci?) e’

@?R(w,—wy) wk — 1

whichleadsto 2b,+12b, Y3+3063Y3=Sin3[9 a(ww,—1]"
¢ cf Weo T

The boundary conditions on the flow are:
(i) On DO, from symmetry, i = 0, V¥ = 0.
(il) On 04, ¥ and V) are known from §2.2.
(iii) On AB, f = — Uh,, &jor = U.
(iv) On BC, ¢ and V*)r are known from §2.3.
v) OnCD, ¥ =0,7,,=0.

To determine a trial flow, numerical values are assigned to the parameters in
(2.1). Initial values are selected for b, and 6, from a scale drawing of a plausible
flow. With the finite-difference scheme outlined in §3 the stream function, in the
dimensionless form | Uh,, is determined numerically at each mesh node. From
this solution the normal stress ratio o, R?/uUh, is determined at each mesh node
lying on boundary CD except for a constant. The constant is evaluated from the
pressure at C known from (2.32). The supplementary stress ratio is then found:

SR2 _ Tk R? _ o, R?
#Uhky — pUhy  pUky’
+ See for example, Lamb (1932, p. 178).

(2.33)
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The quantity e, e =8/Tk, (2.34)

is a measure of the relative magnitude of § compared to the membrane stress
Tx. The average and root-mean-square values of e are calculated. Depending on
the size and distribution of e an adjustment is made to either b, or 0,. With the
new values of b, and 6, another solution is commenced. This process is repeated

000
20 P\\
16000 \\
\, 7n R:[uUh,
12000 ~
8000 \\
4000 T~
L~ \ o
(SR Uhg) x 10 ———
. // K\ 1T
4000 /
N v
—8000

0 001 002 003 004 005 006 007 008 009 010
Distance along the membrane from point D, s/R

Ficure 4. The variation of o,, the normal stress on CD, and 8§ along the shear-free
boundary in the flow of figure 3. Average fractional error ¢, in S/Tk is —0-00348, root-
mean-square fractional error e, = 0-0249. Polynomial representation of curve CD with
b, = 0-3345, 6, = 0-3950 given by

z/R = 03345+ 9-3110 (y/R)?+ 393-1013 (y/R)*— 11837-87 (y/R)S.

Optimal Variations in b, Variations in 0,
values p A — A

by 0-3345 0-3340 0-3350 0-3345 0-3345
Change in b, from optimal — —0159 +015% 0 0
0, 0-3950 0-3950 0-3950 0-3945 0-3955
Change in 0, from optimal — 0 0 0-139% +0-139%
e, 0-02499 0-03790 0:03660 0-03127 0-02987
Change in ¢, — 451969, +46-7% +2529% 41969

TABLE 1. Sensitivity of e, to small perturbations of b, and ¢, from
the optimal values for the flow in figure 3

untileis reduced tosatisfactorylevels. With a sixth-degree polynomial representa-
tion of 0D there was little difficulty in the case examined here in meeting the
requirements

leg] < 0-01, e, < 0-03,

after approximately ten iterations, where e, and e, are the average and r.m.s.
values of e respectively. The sensitivity of e, at these values to perturbations in
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b, and 6, for the flow of figure 3 is shown in table 1. This may be summarized by
observing that a 19, change in b, increases e, by approximately 45%, and
a 19, change in 6, increases e, by approximately 209%,.

2.5. The complete flow

The complete flow is obtained by combining the flows of §§2.2, 2.3, and 2.4.
Between KK’ and BC the flow is known from the results of §2.3. At BC the choice
of boundary conditions there assures the continuity of flow. In 04 BCD the flow
is determined numerically and the value of p, obtained from the solution. The
location of section JJ’, the junction of the tapes and guides, is found from applica-
tion of the continuity conditions of §2.1. These lead to

Bexp(h )snA h 2Rh -1, (2.35)
Bexp(h )[s1nA+3%cosA] -——é (2.36)
Bexp (‘;—231) [sin A — 3% cos A]
T {pohw 3uUh,, (2R\}
TSRF\ T T Ry \h

F,
[¢J+ s1n2¢J—ﬁ—- 2d,+1sin2¢; + 3 s1n4¢_,]} (2.37)

where A =3tax;h,+e

and ¢ is the value of ¢ at section JJ'. These equations are to be solved for B, €
and z /R (or ¢;), given the quantities in (2.1). However, it is more convenient to
prescribe z;/R (or ¢;) and solve for B, ¢, and F,/T. By obtaining the solution for
several suitable values of z;/R the original problem may be solved by interpola-
tion. The equations are first solved for F, /T (or o, see (2.7)). Adding (2.36) and
(2.87) and combining with (2.35), a quadratic equation in « is obtained, the solu-
tion of which is

bl +a3/2Rh, 1 ho/hw+x3/2Rhw—l)2_ 5B TE o
=~ anpar ¢ LT 3uT ren| . %%

where

heo  3uU by by
L=00= P ¢J+%Sln2¢.f—— (§ds +1sin 24, + 55 sindg;)|.
T T By ho

The requirement a > 0 is used to select the appropriate root. In those cases for
whichz,;/R — 0,

_ 2x,/R

N

34U (ho/hw— 1)3
5 e ),

and i T\ o,k

F,
7 (2.39)
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It is interesting to note that for finite values of F,,/T', section JJ’ will not coincide
with OA. This condition, together with the continuity of tape slope at section JJ’
and the tape form, (2.8), below JJ' requires the adhesive layer to ‘bulge’ slightly
before the tapes touch the guides. The values of B and € are now readily obtained.
Figure 5 shows a specimen curve of the variation of z;/R with F,,/T when the
other parameters of (2.1) take the values indicated.

120

-4 100

1 80

60

F_|T

4()

20

L L i

i i 0
—0:06 —0-058 —0-04 —0-03 --0-02 —0-01

xJ/R

Ficure 5. The variation of x;/R with F_/T for the linearized tape form
solution of §2.1 with pU/T = 0-1, b [hy = 1-38, ky/R = 0-01.

The energy dissipation rate W is
W = 2(Fg—F,)U+2UT.
Below JJ’ andabove BC, where linearized solutions have been used for the flow,

the variation in tape tension is negligible compared with the variation between
JJ and BC. Accordingly -

WIUT = 2 (Fy|T — Fy[T) +2.

Between JJ’ and OA, in figure 1, the tape tension variation isobtained from (2.5);
above the nip the variation is determined from the numerical solution. For the
flow of figure 3, taking F,,/T = 60, the tension variation is shown in figure 6, and

W|UT = 4-674. (2.40)

Since the value of F,/T can be chosen arbitrarily it is necessary to check that
there is positive pressure between the guide and tape, i.e.

F|T > —pR|T. (2.41)
In figure 6 it is evident that (2.41) is satisfied.
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Ficure 6. The variation of the tape tension ratio F/T for the flow: pU/T = 01,
h[hy = 1:38, ho/R = 0-01, F /T = 60-0. Also shown is the curve of —pR/T, to confirm
that there is positive pressure between the guide and tape.

Ficure 7. Typical finite-difference mesh. The heavy line shows the path followed in de-
termining the pressure ratio at nodes on the tape, or roller, boundary and on the shear-
free boundary CD.
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3. Outline of the numerical method and comparison with experi-
mental results
3.1. Numerical method

In the numerical analysis dimensionless ratios are used. In developing the
theory, however, it is more convenient to use dimensional quantities. The
numerical scheme is adapted from a procedure used by Griffin & Varga (1963)
for the solution of plane elasticity problems. A polar mesh, origin at the guide
centre, is imposed on 0ABCD in the manner shown in figure 7. The intersections
of the mesh lines and the boundary coincide with mesh nodes. As boundary CD
is altered during a solution the mesh is also altered and the number of nodes re-
mains constant. A first-order finite-difference equation in terms of the stream
function is obtained at each node by Taylor series expansion or the method
described by Griffin & Varga. Ata regular node in which the boundary conditions
do not explicitly affect the equation, see figure 8,

For(V3)1 +foa(VE) 2+ fos (VA3 +fos (VB s — (for +Foe + oz +fos) (VEF)o = 0, (3.1)
where  fo, = —(ry—7,)[2ry(0,—00),  foo = (ro+13) (03— 0,)[4(ra—1)
Jos = —(ra—13)[2ro(03—61),  fou = (ro+74) (61— O3)[4(ra—1y),

(V) = At V1 +for Ve +fos s+ foabs— (for+for T fos T o) ol - (3.2)

Figure 8. Detailed view of mesh.
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and Ay = F5(ry+2rg+15) (ry—1y) (6, —05),

with similar expressions for (V¥)),,7 = 1,2,3,4. (4, is the area of the dashed
figure acef.) To describe the use of equations (3.1) and (3.2) let the finite-difference
equation for the typical node 0 be written

12
X a,; = 0. (3.3)
i=0

Node 1is tested to determine whether it lies on a boundary. If it does, the appro-
priate boundary conditions are introduced (see below); if not the four nodes
surrounding it, used in determining the finite-difference expression for (V3/),,
are tested similarly. If any do lie on the boundary the corresponding term in
(3.3) is known since ¥ is known on each boundary. The corresponding term in
(3.3) is therefore known and is moved to the right-hand side. For those nodes
that do not lie on the boundary the contribution to each coefficient a; from
(V#3)), is determined. Then, in turn, nodes 2, 3 and 4 are similarly treated.

At the boundaries ¥ and V2 are prescribed. On 04, BC, and DO these are
known from §2.4. On A B, the guide boundary,

v U

2
2 — . —_D e —
(V 1)0)7, - k%a (% + Ukco) 2kij+R s

where ¢ denotes a node on the boundary 4B, j is the adjacent internal node along
the radial line through 4, and 4,; is the distance betweennodes ¢ and j. On the shear-
free boundary CD, as is proved in the appendix,

(3.4)

V2 = — 2k 0/on, (3.5)
o oY loy .
where 3 = o é‘+;a—0smé‘ (3.6)

and ¢ is the angle between the outward normal » to CD at a node and the radial
mesh line through the node, see figure 7. First-order finite-difference expressions
are then substituted for 8yr/or and 2y/86. The values of k and J are obtained from
the polynomial expression for CD. With the above results a finite-difference
equation is obtained for each internal mesh node. With the mesh used, shown in
figure 7, there are 96 equations.

The solution for the stream function at the mesh nodes is found by matrix
inversion (as performed at the Stanford Computing Center 1969). The value of
V2risnow obtained from (3.2) for internal nodes and from the appropriate bound-
ary condition for boundary nodes. The difference in pressure between any ad-
jacent nodes can be calculated from the harmonic conjugate relations between
V2 and p/p. In figure 8, consider that p/u is known at node 0 and to be found at
node 1. On the line 204, V/ is ‘fitted’ to the quadratic expression

V&) = by+byr +byr2. - (3.7)
Atnode 0then o(V&p)/or = by + 2b,7.

A sgimilar procedure is used to determine 9(V%/)/or at node 1. On the arc 01, p/u
is approximated by the quadratic’expression

Pl = ¢+ 0+ ¢36%, (3.8)
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where the coefficients ¢, are evaluated for (3.8) applied at node 0, and

Lo(plp) _ a(VE)
P T R (3.9)

is applied at nodes 0 and 1. Thus p/x at node 1 is found. Moving as indicated in
figure 6, p/u is evaluated at each mesh node on the path starting and ending
at section BC, along which the pressure is uniform. The accumulated error
may then be determined. This was generally found to be approximately 29,
of the maximum value of pressure on the path. To eliminate the difference
between the initial and final values p/u is corrected by the same ‘error per
step’.

To determine the normal stress on boundary CD the normal strain rate must
be found. It is proved in the appendix that

€n = —5% (%), (3.10)

where s is the distance along boundary CD, increasing in the direction from D
to C. To determine ¢, at node [ on CD in figure 7, ¢/on is determined at %, 1,
and m from equation (3.6), where dy/0r and 0¢/o0 are obtained by quadratic
fitting. The distancealong boundary CD between nodes may be obtained from the
polynomial expression for CD; however, the straight-line approximation was
found to give virtually indistinguishable results. The values of dy/on are “fitted’
to a quadratic expression in s, and €, is found from (3.10). The normal stress at
nodes on CD is then obtained from the constitutive relation, see (2.23), thus
completing the solution to the flow problem with the prescribed shear-free
boundary.

3.2. Comparison with experimental results

The procedure outlined in §3.1 was applied to the separating flow between par-
tially immersed counter-rotating rollers examined by Pitts & Greiller. This
served two purposes. A distinctive feature of the observed stable two-dimensional
flow is the presence of two eddies under the lowest point of the surface tension
membrane. These eddies could be a consequence of inertia effects in the real fluid.
A numerical analysis based on the exact slow viscous flow equations, however,
shows that this is not so. Second, since there appears to be no analytic solu-
tions or special cases with which to verify the numerical results, the experi-
mental data can serve as a check on the numerical solution.

The flow isindicated in figure 9. Inregion 0.4 BCD the problem is similar to that
dealt with in §2. Here, however, the flow rate between the rollers is not known
and must be found as part of the solution. For any given flow rate, providing
the assumptions of the numerical method are satisfied, a numerical solution in
OABCD can be found. This yields a value of the pressure at the nip section. With
no exact solution for the flow below the nip, the following widely used procedure
is adopted (e.g. Banks & Mills 1954; Taylor 1963). From a Reynolds flow analysis
below the nip, in which the roller boundary is replaced by a parabola with a
common tangent and radius of curvature at the nip section (see §2.2), the
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pressure at the entrance to the narrowing gap between the rollers, p, say, may
be obtained, where

_ —(4=30) 327U (R\}
Po=""15 & \k) TP

The value of p, thus obtained should equal atmospheric pressure taken as
zero, gravity effects being disregarded. Figure 10 shows how the dimensionless
pressure ratio pR2/uUh, comes close to the asymptotic value p, R?/upUh, while
the parabolic approximation for the roller boundary is close to the roller and the
Reynolds flow assumption is still valid. By solving several problems for different
flow rates for which p, varies between negative and positive values, the correct
flow rate is obtained by interpolation.

Surface tension
membrane

H H

‘¥ Bath boundary

F1cUure 9. The flow examined by Pitts & Greiller.
For the flow of figure 3

2
A=1380 and Pofo _ L1913x 108

1Uh,
With a second flow rate taken as A = 1-340 it was found that
P B*
=—24 108,
WU, 8x 10

From linear interpolation the value of A corresponding to zero p, is A = 1-345.

In §3 the experimental determination of the flow rate was approximate. The
reported results are confined to the mean value and the range of A for all experi-
ments (with varying /R and pU/|T). These were found to be

mean (A) = 1-33 and 126 < A < 1-38.

A comparison can also be made between the locations of point D, the lowest
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point of the meniscus, in the theoretical and experimental results. From data
kindly supplied by Dr E. Pitts, with

pUIT =01 and hy/R = 0-010,
Zp/R lies in the range 0-28 < zp/R < 0:32.
The numerical solution yields
zp|R = by = 0-330,
which is higher than expected, but still close to the experimental values. A
qualitative comparison can be made between the theoretical streamline pattern
and the sketch of a typical observed streamline pattern, figure 2 of Pitts &

Greiller. Corresponding to the eddies observed in the experimental flow there are
eddies in the flow of figure 3.

PR uUhy

Roller boundary
Parabolic
approximation to
the roller
A=1-380

1} { Tl 1 { ! 1

N  —— 2
—10 —08 —06 —04 —02—01f 01020304 050607
Asymptotic pressure ratio —10000 4

Fieure 10. The variation of pressure in the region below the nip (z < 0)
from lubrieation theory, for two flow rates. h,/R = 0-01.
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Appendix. Proof of equations (3.5) and (3.10)

In figure 11, CD represents a shear-free streamline. The co-ordinates s and n
are, respectively, the distance along CD in the direction indicated, and the out-
ward normal. At any point on CD, e.g. point O, the Cartesian axes locally
coincident with s and n are 7 and 7 respectively.
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7, n

Ficurg 11. The Cartesian co-ordinates 7, 9, coincident at point O
with the curvilinear system s, n.

1 , . ou, ou oy oy
T =Y = Y = el T =
AtO AT Ve = V= = gt s = 0
0% g& &
2
VY = 67'2 67)2’

where 7, and 7, are shear strain rates. Hence, at O

art ~ “\osz ™ %

where « is positive when the positive direction of » is on the coneave side of CD.
Since CD is a streamline

V23 = — 2x0yr|on.
Clearly the above argument is valid at any point on 0D, which thus proves (3.5).

Similarly, at O
P w)___ o\ _ o
A A os\on ) " as

n

and, since CD is a streamline, €, = 7 (6;&)
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